250/0)

	ۥ		TANTA UNIVERSITY	
			FACULTY OF SCIENCE	
			DEPARTMENT OF BOTANY	
	EX	AMINATION FOR J	UNIOR (4 TH YEAR CHEMISTRY-MICRO	OBIOLOGY)
			5	COURSE CODE:
	COURSE TITLE:	Phy グ	esiology of Algae	BO4123
DATE:	JANUARY, 2014	TERM: FIRST	TOTAL ASSESSMENT MARKS: 100	TIME ALLOWED:2 HOUR

- 1 Write short account on the following:
- A) Disadvantages of limited volume algae culture
- B) Indices of growth of algae
- C) Different kinds of algae nutrition
- D) differences between Open and closed algae culture
- 2- Write short notes on the following:
 - A) Advantages of continuous culture
 - B) Role of Magnesium, Nitrogen and silicon in algae growth
 - C) Reasons of entering algae to death phase
 - D) Role of carotenoid in algae

TANTA UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF CHEMISTRY EXAMINATION FOR REGULAR B. SC. STUDENTS COURSE TITLE: Solid State Chemistry DATE: 14TH JANUARY, 2014 TERM: FIRST TOTAL ASSESSMENT MARKS: 50 TIME: 2 HOURS

Answer the following questions (4 marks per suquestion):

- 1-Draw and carefully label diagrams illustrating each of the following:
 - a- An end centered tetragonal Bravais unit cell
 - b- The (111) and (110) planes in a cubic unit cell.
 - c- The [111] and [110] directions in a cubic unit cell.
 - d- The 111 and 110 positions in a cubic unit cell.
 - e- A hexagonal unit cell showing the axes and angles.
 - f- Different types of liquid crystals.
 - g- Phase diagram of the cationic surfactant cetyl trimethylammonium bromide (CTAB) in water showing the hexagonal, cubic and lamellar liquid crystal phases.
 - h- The chemical structure of montmorillonite clay.
 - i- The electronic and chemical processes occurring in TiO₂ particles upon photocatalytic mineralization of industrial waste water.
 - j- Different types of point defects.
- 2-(a) Given silver crystals having a face-centered cubic (fcc) crystal structure with cell parameters a = b = c = 4.086 Å, and its atomic mass as 107.87 g/mol, calculate the density of silver given Avogadro's Number $N = 6.02 \times 10^{23}$ and $1 \text{ Å} = 10^{-8}$ cm.
- (b) In not more than ten words, define each of the following terms:

 A plasmon, a mesogen, an exciton, the aspect ratio (R) of nanorods, the exciton Bohr radius (a_{ex}), an amorphous material, intercalation phenomenon and Burger vector (b).
- (c) A reaction product is expected (pre-determined) by the arrangement and packing of the reactant molecules. Discuss this principle taking the photodimerization of trans cinnamic acids as a model.
- (d) Discuss briefly the application of polymerized crystalline colloidal arrays (PCCA) in the sensing of Pb²⁺, Cu²⁺, glucose and bladder cancer.
- 3- Give a scientific reason for each of the following:
- (a) Protein emission is dominated by tryptophan emission.
- (b) Zinc sulphide becomes fluorescent upon heating.
- (c) A transparent NaCl crystal becomes colored upon exposure to Na metal vapor.

EXAMINERS	ا. د. الزيني موسى عبيد PROF. DR.	